Module nlisim.oldmodules.macrophage
Expand source code
import itertools
from random import choice, shuffle
from typing import Any, Dict, Tuple
import attr
import numpy as np
from nlisim.cell import CellData, CellList
from nlisim.coordinates import Point, Voxel
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.oldmodules.fungus import FungusCellData, FungusCellList
from nlisim.random import rg
from nlisim.state import State
from nlisim.util import TissueType
MAX_CONIDIA = 100
# np.warnings.filterwarnings('error', category=np.VisibleDeprecationWarning)
class MacrophageCellData(CellData):
    MACROPHAGE_FIELDS = [
        ('iteration', 'i4'),
        ('phagosome', (np.int32, (MAX_CONIDIA))),
    ]
    dtype = np.dtype(CellData.FIELDS + MACROPHAGE_FIELDS, align=True)  # type: ignore
    @classmethod
    def create_cell_tuple(
        cls,
        **kwargs,
    ) -> Tuple:
        iteration = 0
        phagosome = np.empty(MAX_CONIDIA)
        phagosome.fill(-1)
        return CellData.create_cell_tuple(**kwargs) + (
            iteration,
            phagosome,
        )
@attr.s(kw_only=True, frozen=True, repr=False)
class MacrophageCellList(CellList):
    CellDataClass = MacrophageCellData
    def len_phagosome(self, index):
        cell = self[index]
        return len(np.argwhere(cell['phagosome'] != -1))
    def append_to_phagosome(self, index, pathogen_index, max_size):
        cell = self[index]
        index_to_append = MacrophageCellList.len_phagosome(self, index)
        if (
            index_to_append < MAX_CONIDIA
            and index_to_append < max_size
            and pathogen_index not in cell['phagosome']
        ):
            cell['phagosome'][index_to_append] = pathogen_index
            return True
        else:
            return False
    def remove_from_phagosome(self, index, pathogen_index):
        phagosome = self[index]['phagosome']
        if pathogen_index in phagosome:
            itemindex = np.argwhere(phagosome == pathogen_index)[0][0]
            size = MacrophageCellList.len_phagosome(self, index)
            if itemindex == size - 1:
                # full phagosome
                phagosome[itemindex] = -1
                return True
            else:
                phagosome[itemindex:-1] = phagosome[itemindex + 1 :]
                phagosome[-1] = -1
                return True
        else:
            return False
    def clear_all_phagosome(self, index, fungus: FungusCellList):
        for i in range(0, self.len_phagosome(index)):
            index = self[index]['phagosome'][i]
            fungus[index]['internalized'] = False
        self[index]['phagosome'].fill(-1)
    def recruit_new(self, rec_rate_ph, rec_r, p_rec_r, tissue, grid, cyto):
        num_reps = rec_rate_ph  # maximum number of macrophages recruited per time step
        cyto_index = np.argwhere(np.logical_and(tissue == TissueType.BLOOD.value, cyto >= rec_r))
        if len(cyto_index) == 0:
            # nowhere to place cells
            return
        for _ in range(num_reps):
            if p_rec_r > rg.random():
                ii = rg.integers(cyto_index.shape[0])
                point = Point(
                    x=grid.x[cyto_index[ii, 2]],
                    y=grid.y[cyto_index[ii, 1]],
                    z=grid.z[cyto_index[ii, 0]],
                )
                # Do we really want these things to always be in the exact center of the voxel?
                # No we do not. Should not have any effect on model, but maybe some on
                # visualization.
                perturbation = rg.multivariate_normal(
                    mean=[0.0, 0.0, 0.0], cov=[[0.25, 0.0, 0.0], [0.0, 0.25, 0.0], [0.0, 0.0, 0.25]]
                )
                perturbation_magnitude = np.linalg.norm(perturbation)
                perturbation /= max(1.0, perturbation_magnitude)
                point += perturbation
                self.append(MacrophageCellData.create_cell(point=point))
    def absorb_cytokines(self, m_abs, cyto, grid):
        for index in self.alive():
            vox = grid.get_voxel(self[index]['point'])
            x = vox.x
            y = vox.y
            z = vox.z
            cyto[z, y, x] = (1 - m_abs) * cyto[z, y, x]
    def produce_cytokines(self, m_det, m_n, grid, fungus: FungusCellList, cyto):
        for i in self.alive():
            vox = grid.get_voxel(self[i]['point'])
            hyphae_count = 0
            # Moore neighborhood
            neighborhood = tuple(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3))
            for dx, dy, dz in neighborhood:
                zi = vox.z + dz
                yj = vox.y + dy
                xk = vox.x + dx
                if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)):
                    index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi))
                    for index in index_arr:
                        if fungus[index]['form'] == FungusCellData.Form.HYPHAE:
                            hyphae_count += 1
            cyto[vox.z, vox.y, vox.x] = cyto[vox.z, vox.y, vox.x] + m_n * hyphae_count
    def move(self, rec_r, grid, cyto, tissue, fungus: FungusCellList):
        for cell_index in self.alive():
            cell = self[cell_index]
            cell_voxel = grid.get_voxel(cell['point'])
            valid_voxel_offsets = []
            above_threshold_voxel_offsets = []
            # iterate over nearby voxels, recording the cytokine levels
            for dx, dy, dz in itertools.product((-1, 0, 1), repeat=3):
                zi = cell_voxel.z + dz
                yj = cell_voxel.y + dy
                xk = cell_voxel.x + dx
                if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)):
                    if tissue[zi, yj, xk] != TissueType.AIR.value:
                        valid_voxel_offsets.append((dx, dy, dz))
                        if cyto[zi, yj, xk] >= rec_r:
                            above_threshold_voxel_offsets.append((cyto[zi, yj, xk], (dx, dy, dz)))
            # pick a target for the move
            if len(above_threshold_voxel_offsets) > 0:
                # shuffle + sort (with _only_ 0-key, not lexicographic as tuples) ensures
                # randomization when there are equal top cytokine levels
                # note that numpy's shuffle will complain about ragged arrays
                shuffle(above_threshold_voxel_offsets)
                above_threshold_voxel_offsets = sorted(
                    above_threshold_voxel_offsets, key=lambda x: x[0], reverse=True
                )
                _, target_voxel_offset = above_threshold_voxel_offsets[0]
            elif len(valid_voxel_offsets) > 0:
                target_voxel_offset = choice(valid_voxel_offsets)
            else:
                raise AssertionError(
                    'This cell has no valid voxel to move to, including the one that it is in!'
                )
            # Some nonsense here, b/c jump is happening at the voxel level, not the point level
            starting_cell_point = Point(x=cell['point'][2], y=cell['point'][1], z=cell['point'][0])
            starting_cell_voxel = grid.get_voxel(starting_cell_point)
            ending_cell_voxel = grid.get_voxel(
                Point(
                    x=grid.x[cell_voxel.x + target_voxel_offset[0]],
                    y=grid.y[cell_voxel.y + target_voxel_offset[1]],
                    z=grid.z[cell_voxel.z + target_voxel_offset[2]],
                )
            )
            ending_cell_point = (
                starting_cell_point
                + grid.get_voxel_center(ending_cell_voxel)
                - grid.get_voxel_center(starting_cell_voxel)
            )
            cell['point'] = ending_cell_point
            self.update_voxel_index([cell_index])
            for i in range(0, self.len_phagosome(cell_index)):
                f_index = cell['phagosome'][i]
                fungus[f_index]['point'] = ending_cell_point
                fungus.update_voxel_index([f_index])
    def internalize_conidia(self, m_det, max_spores, p_in, grid, fungus: FungusCellList):
        for i in self.alive():
            cell = self[i]
            vox = grid.get_voxel(cell['point'])
            # Moore neighborhood, but order partially randomized. Closest to furthest order, but
            # the order of any set of points of equal distance is random
            neighborhood = list(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3))
            shuffle(neighborhood)
            neighborhood = sorted(neighborhood, key=lambda v: v[0] ** 2 + v[1] ** 2 + v[2] ** 2)
            for dx, dy, dz in neighborhood:
                zi = vox.z + dz
                yj = vox.y + dy
                xk = vox.x + dx
                if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)):
                    index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi))
                    for index in index_arr:
                        if (
                            fungus[index]['form'] == FungusCellData.Form.CONIDIA
                            and not fungus[index]['internalized']
                            and p_in > rg.random()
                        ):
                            fungus[index]['internalized'] = True
                            self.append_to_phagosome(i, index, max_spores)
    def damage_conidia(self, kill, t, health, fungus):
        for i in self.alive():
            cell = self[i]
            for ii in range(0, self.len_phagosome(i)):
                index = cell['phagosome'][ii]
                fungus[index]['health'] = fungus[index]['health'] - (health * (t / kill))
                if fungus[index]['dead']:
                    self.remove_from_phagosome(i, index)
    def remove_if_sporeless(self, val):
        living = self.alive()
        living_len = len(living)
        num = int(val * living_len)
        if num == 0 and living_len > 0:
            num = 1
        for _ in range(num):
            r = rg.integers(living_len)
            self.cell_data[living[r]]['dead'] = True
def cell_list_factory(self: 'MacrophageState'):
    return MacrophageCellList(grid=self.global_state.grid)
@attr.s(kw_only=True)
class MacrophageState(ModuleState):
    cells: MacrophageCellList = attr.ib(default=attr.Factory(cell_list_factory, takes_self=True))
    rec_r: float
    p_rec_r: float
    m_abs: float
    m_n: float
    kill: float
    m_det: int
    rec_rate_ph: int
    time_m: float
    max_conidia_in_phag: int
    p_internalization: float
    rm: float
class Macrophage(ModuleModel):
    name = 'macrophage'
    StateClass = MacrophageState
    def initialize(self, state: State):
        macrophage: MacrophageState = state.macrophage
        grid: RectangularGrid = state.grid
        macrophage.rec_r = self.config.getfloat('rec_r')
        macrophage.p_rec_r = self.config.getfloat('p_rec_r')
        macrophage.m_abs = self.config.getfloat('m_abs')
        macrophage.m_n = self.config.getfloat('Mn')
        macrophage.kill = self.config.getfloat('kill')
        macrophage.m_det = self.config.getint('m_det')  # radius
        macrophage.rec_rate_ph = self.config.getint('rec_rate_ph')
        macrophage.time_m = self.config.getfloat('time_m')
        macrophage.max_conidia_in_phag = self.config.getint('max_conidia_in_phag')
        macrophage.rm = self.config.getfloat('rm')
        macrophage.p_internalization = self.config.getfloat('p_internalization')
        macrophage.cells = MacrophageCellList(grid=grid)
        return state
    def advance(self, state: State, previous_time: float):
        macrophage: MacrophageState = state.macrophage
        m_cells: MacrophageCellList = macrophage.cells
        tissue = state.geometry.lung_tissue
        grid = state.grid
        cyto = state.molecules.grid['m_cyto']
        n_cyto = state.molecules.grid['n_cyto']
        fungus: FungusCellList = state.fungus.cells
        health = state.fungus.health
        # recruit new
        m_cells.recruit_new(
            macrophage.rec_rate_ph, macrophage.rec_r, macrophage.p_rec_r, tissue, grid, cyto
        )
        # absorb cytokines
        m_cells.absorb_cytokines(macrophage.m_abs, cyto, grid)
        # produce cytokines
        m_cells.produce_cytokines(macrophage.m_det, macrophage.m_n, grid, fungus, n_cyto)
        # move
        m_cells.move(macrophage.rec_r, grid, cyto, tissue, fungus)
        # internalize
        m_cells.internalize_conidia(
            macrophage.m_det,
            macrophage.max_conidia_in_phag,
            macrophage.p_internalization,
            grid,
            fungus,
        )
        # damage conidia
        m_cells.damage_conidia(macrophage.kill, macrophage.time_m, health, fungus)
        if len(fungus.alive(fungus.cell_data['form'] == FungusCellData.Form.CONIDIA)) == 0:
            m_cells.remove_if_sporeless(macrophage.rm)
        return state
    def summary_stats(self, state: State) -> Dict[str, Any]:
        macrophage: MacrophageState = state.macrophage
        num_phagosome: int = 0
        for cell_index in macrophage.cells.alive():
            cell: MacrophageCellData = macrophage.cells[cell_index]
            num_phagosome += np.sum(cell['phagosome'] >= 0)
        return {
            'count': len(macrophage.cells.alive()),
            'phagosome': int(num_phagosome),
        }
    def visualization_data(self, state: State) -> Tuple[str, Any]:
        return 'cells', state.macrophage.cellsFunctions
- def cell_list_factory(self: MacrophageState)
- 
Expand source codedef cell_list_factory(self: 'MacrophageState'): return MacrophageCellList(grid=self.global_state.grid)
Classes
- class Macrophage (config: SimulationConfig)
- 
Expand source codeclass Macrophage(ModuleModel): name = 'macrophage' StateClass = MacrophageState def initialize(self, state: State): macrophage: MacrophageState = state.macrophage grid: RectangularGrid = state.grid macrophage.rec_r = self.config.getfloat('rec_r') macrophage.p_rec_r = self.config.getfloat('p_rec_r') macrophage.m_abs = self.config.getfloat('m_abs') macrophage.m_n = self.config.getfloat('Mn') macrophage.kill = self.config.getfloat('kill') macrophage.m_det = self.config.getint('m_det') # radius macrophage.rec_rate_ph = self.config.getint('rec_rate_ph') macrophage.time_m = self.config.getfloat('time_m') macrophage.max_conidia_in_phag = self.config.getint('max_conidia_in_phag') macrophage.rm = self.config.getfloat('rm') macrophage.p_internalization = self.config.getfloat('p_internalization') macrophage.cells = MacrophageCellList(grid=grid) return state def advance(self, state: State, previous_time: float): macrophage: MacrophageState = state.macrophage m_cells: MacrophageCellList = macrophage.cells tissue = state.geometry.lung_tissue grid = state.grid cyto = state.molecules.grid['m_cyto'] n_cyto = state.molecules.grid['n_cyto'] fungus: FungusCellList = state.fungus.cells health = state.fungus.health # recruit new m_cells.recruit_new( macrophage.rec_rate_ph, macrophage.rec_r, macrophage.p_rec_r, tissue, grid, cyto ) # absorb cytokines m_cells.absorb_cytokines(macrophage.m_abs, cyto, grid) # produce cytokines m_cells.produce_cytokines(macrophage.m_det, macrophage.m_n, grid, fungus, n_cyto) # move m_cells.move(macrophage.rec_r, grid, cyto, tissue, fungus) # internalize m_cells.internalize_conidia( macrophage.m_det, macrophage.max_conidia_in_phag, macrophage.p_internalization, grid, fungus, ) # damage conidia m_cells.damage_conidia(macrophage.kill, macrophage.time_m, health, fungus) if len(fungus.alive(fungus.cell_data['form'] == FungusCellData.Form.CONIDIA)) == 0: m_cells.remove_if_sporeless(macrophage.rm) return state def summary_stats(self, state: State) -> Dict[str, Any]: macrophage: MacrophageState = state.macrophage num_phagosome: int = 0 for cell_index in macrophage.cells.alive(): cell: MacrophageCellData = macrophage.cells[cell_index] num_phagosome += np.sum(cell['phagosome'] >= 0) return { 'count': len(macrophage.cells.alive()), 'phagosome': int(num_phagosome), } def visualization_data(self, state: State) -> Tuple[str, Any]: return 'cells', state.macrophage.cellsAncestorsInherited members
- class MacrophageCellData (arg: Union[int, Iterable[ForwardRef('CellData')]], initialize: bool = False, **kwargs)
- 
A low-level data contain for an array cells. This class is a subtype of numpy.recarray containing the lowest level representation of a list of "cells" in a simulation. The underlying data format of this type are identical to a simple array of C structures with the fields given in the static "dtype" variable. The base class contains only a single coordinate representing the location of the center of the cell. Most implementations will want to override this class to append more fields. Subclasses must also override the base implementation of create_cellto construct a single record containing the additional fields.For example, the following derived class adds an addition floating point value associated with each cell. class DerivedCell(CellData): FIELDS = CellData.FIELDS + [ ('iron_content', 'f8') ] dtype = np.dtype(CellData.FIELDS, align=True) @classmethod def create_cell_tuple(cls, iron_content=0, **kwargs) -> Tuple: return CellData.create_cell_tuple(**kwargs) + (iron_content,)Expand source codeclass MacrophageCellData(CellData): MACROPHAGE_FIELDS = [ ('iteration', 'i4'), ('phagosome', (np.int32, (MAX_CONIDIA))), ] dtype = np.dtype(CellData.FIELDS + MACROPHAGE_FIELDS, align=True) # type: ignore @classmethod def create_cell_tuple( cls, **kwargs, ) -> Tuple: iteration = 0 phagosome = np.empty(MAX_CONIDIA) phagosome.fill(-1) return CellData.create_cell_tuple(**kwargs) + ( iteration, phagosome, )Ancestors- CellData
- numpy.ndarray
 Class variables- var MACROPHAGE_FIELDS
 Inherited members
- class MacrophageCellList (*, grid: RectangularGrid, max_cells: int = 1000000, cell_data: CellData = NOTHING)
- 
A python view on top of a CellData array. This class represents a pythonic interface to the data contained in a CellData array. Because the CellData class is a low-level object, it does not allow dynamically appending new elements. Objects of this class get around this limitation by pre-allocating a large block of memory that is transparently available. User-facing properties are sliced to make it appear as if the extra data is not there. Subclassed types are expected to set the CellDataClassattribute to a subclass ofCellData. This provides information about the underlying low-level array.Parameters- grid:- simulation.grid.RectangularGrid
- max_cells:- int, optional
- cells:- simulation.cell.CellData, optional
 Method generated by attrs for class MacrophageCellList. Expand source codeclass MacrophageCellList(CellList): CellDataClass = MacrophageCellData def len_phagosome(self, index): cell = self[index] return len(np.argwhere(cell['phagosome'] != -1)) def append_to_phagosome(self, index, pathogen_index, max_size): cell = self[index] index_to_append = MacrophageCellList.len_phagosome(self, index) if ( index_to_append < MAX_CONIDIA and index_to_append < max_size and pathogen_index not in cell['phagosome'] ): cell['phagosome'][index_to_append] = pathogen_index return True else: return False def remove_from_phagosome(self, index, pathogen_index): phagosome = self[index]['phagosome'] if pathogen_index in phagosome: itemindex = np.argwhere(phagosome == pathogen_index)[0][0] size = MacrophageCellList.len_phagosome(self, index) if itemindex == size - 1: # full phagosome phagosome[itemindex] = -1 return True else: phagosome[itemindex:-1] = phagosome[itemindex + 1 :] phagosome[-1] = -1 return True else: return False def clear_all_phagosome(self, index, fungus: FungusCellList): for i in range(0, self.len_phagosome(index)): index = self[index]['phagosome'][i] fungus[index]['internalized'] = False self[index]['phagosome'].fill(-1) def recruit_new(self, rec_rate_ph, rec_r, p_rec_r, tissue, grid, cyto): num_reps = rec_rate_ph # maximum number of macrophages recruited per time step cyto_index = np.argwhere(np.logical_and(tissue == TissueType.BLOOD.value, cyto >= rec_r)) if len(cyto_index) == 0: # nowhere to place cells return for _ in range(num_reps): if p_rec_r > rg.random(): ii = rg.integers(cyto_index.shape[0]) point = Point( x=grid.x[cyto_index[ii, 2]], y=grid.y[cyto_index[ii, 1]], z=grid.z[cyto_index[ii, 0]], ) # Do we really want these things to always be in the exact center of the voxel? # No we do not. Should not have any effect on model, but maybe some on # visualization. perturbation = rg.multivariate_normal( mean=[0.0, 0.0, 0.0], cov=[[0.25, 0.0, 0.0], [0.0, 0.25, 0.0], [0.0, 0.0, 0.25]] ) perturbation_magnitude = np.linalg.norm(perturbation) perturbation /= max(1.0, perturbation_magnitude) point += perturbation self.append(MacrophageCellData.create_cell(point=point)) def absorb_cytokines(self, m_abs, cyto, grid): for index in self.alive(): vox = grid.get_voxel(self[index]['point']) x = vox.x y = vox.y z = vox.z cyto[z, y, x] = (1 - m_abs) * cyto[z, y, x] def produce_cytokines(self, m_det, m_n, grid, fungus: FungusCellList, cyto): for i in self.alive(): vox = grid.get_voxel(self[i]['point']) hyphae_count = 0 # Moore neighborhood neighborhood = tuple(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3)) for dx, dy, dz in neighborhood: zi = vox.z + dz yj = vox.y + dy xk = vox.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi)) for index in index_arr: if fungus[index]['form'] == FungusCellData.Form.HYPHAE: hyphae_count += 1 cyto[vox.z, vox.y, vox.x] = cyto[vox.z, vox.y, vox.x] + m_n * hyphae_count def move(self, rec_r, grid, cyto, tissue, fungus: FungusCellList): for cell_index in self.alive(): cell = self[cell_index] cell_voxel = grid.get_voxel(cell['point']) valid_voxel_offsets = [] above_threshold_voxel_offsets = [] # iterate over nearby voxels, recording the cytokine levels for dx, dy, dz in itertools.product((-1, 0, 1), repeat=3): zi = cell_voxel.z + dz yj = cell_voxel.y + dy xk = cell_voxel.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): if tissue[zi, yj, xk] != TissueType.AIR.value: valid_voxel_offsets.append((dx, dy, dz)) if cyto[zi, yj, xk] >= rec_r: above_threshold_voxel_offsets.append((cyto[zi, yj, xk], (dx, dy, dz))) # pick a target for the move if len(above_threshold_voxel_offsets) > 0: # shuffle + sort (with _only_ 0-key, not lexicographic as tuples) ensures # randomization when there are equal top cytokine levels # note that numpy's shuffle will complain about ragged arrays shuffle(above_threshold_voxel_offsets) above_threshold_voxel_offsets = sorted( above_threshold_voxel_offsets, key=lambda x: x[0], reverse=True ) _, target_voxel_offset = above_threshold_voxel_offsets[0] elif len(valid_voxel_offsets) > 0: target_voxel_offset = choice(valid_voxel_offsets) else: raise AssertionError( 'This cell has no valid voxel to move to, including the one that it is in!' ) # Some nonsense here, b/c jump is happening at the voxel level, not the point level starting_cell_point = Point(x=cell['point'][2], y=cell['point'][1], z=cell['point'][0]) starting_cell_voxel = grid.get_voxel(starting_cell_point) ending_cell_voxel = grid.get_voxel( Point( x=grid.x[cell_voxel.x + target_voxel_offset[0]], y=grid.y[cell_voxel.y + target_voxel_offset[1]], z=grid.z[cell_voxel.z + target_voxel_offset[2]], ) ) ending_cell_point = ( starting_cell_point + grid.get_voxel_center(ending_cell_voxel) - grid.get_voxel_center(starting_cell_voxel) ) cell['point'] = ending_cell_point self.update_voxel_index([cell_index]) for i in range(0, self.len_phagosome(cell_index)): f_index = cell['phagosome'][i] fungus[f_index]['point'] = ending_cell_point fungus.update_voxel_index([f_index]) def internalize_conidia(self, m_det, max_spores, p_in, grid, fungus: FungusCellList): for i in self.alive(): cell = self[i] vox = grid.get_voxel(cell['point']) # Moore neighborhood, but order partially randomized. Closest to furthest order, but # the order of any set of points of equal distance is random neighborhood = list(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3)) shuffle(neighborhood) neighborhood = sorted(neighborhood, key=lambda v: v[0] ** 2 + v[1] ** 2 + v[2] ** 2) for dx, dy, dz in neighborhood: zi = vox.z + dz yj = vox.y + dy xk = vox.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi)) for index in index_arr: if ( fungus[index]['form'] == FungusCellData.Form.CONIDIA and not fungus[index]['internalized'] and p_in > rg.random() ): fungus[index]['internalized'] = True self.append_to_phagosome(i, index, max_spores) def damage_conidia(self, kill, t, health, fungus): for i in self.alive(): cell = self[i] for ii in range(0, self.len_phagosome(i)): index = cell['phagosome'][ii] fungus[index]['health'] = fungus[index]['health'] - (health * (t / kill)) if fungus[index]['dead']: self.remove_from_phagosome(i, index) def remove_if_sporeless(self, val): living = self.alive() living_len = len(living) num = int(val * living_len) if num == 0 and living_len > 0: num = 1 for _ in range(num): r = rg.integers(living_len) self.cell_data[living[r]]['dead'] = TrueAncestorsClass variables- var grid : RectangularGrid
- var max_cells : int
 Methods- def absorb_cytokines(self, m_abs, cyto, grid)
- 
Expand source codedef absorb_cytokines(self, m_abs, cyto, grid): for index in self.alive(): vox = grid.get_voxel(self[index]['point']) x = vox.x y = vox.y z = vox.z cyto[z, y, x] = (1 - m_abs) * cyto[z, y, x]
- def append_to_phagosome(self, index, pathogen_index, max_size)
- 
Expand source codedef append_to_phagosome(self, index, pathogen_index, max_size): cell = self[index] index_to_append = MacrophageCellList.len_phagosome(self, index) if ( index_to_append < MAX_CONIDIA and index_to_append < max_size and pathogen_index not in cell['phagosome'] ): cell['phagosome'][index_to_append] = pathogen_index return True else: return False
- def clear_all_phagosome(self, index, fungus: FungusCellList)
- 
Expand source codedef clear_all_phagosome(self, index, fungus: FungusCellList): for i in range(0, self.len_phagosome(index)): index = self[index]['phagosome'][i] fungus[index]['internalized'] = False self[index]['phagosome'].fill(-1)
- def damage_conidia(self, kill, t, health, fungus)
- 
Expand source codedef damage_conidia(self, kill, t, health, fungus): for i in self.alive(): cell = self[i] for ii in range(0, self.len_phagosome(i)): index = cell['phagosome'][ii] fungus[index]['health'] = fungus[index]['health'] - (health * (t / kill)) if fungus[index]['dead']: self.remove_from_phagosome(i, index)
- def internalize_conidia(self, m_det, max_spores, p_in, grid, fungus: FungusCellList)
- 
Expand source codedef internalize_conidia(self, m_det, max_spores, p_in, grid, fungus: FungusCellList): for i in self.alive(): cell = self[i] vox = grid.get_voxel(cell['point']) # Moore neighborhood, but order partially randomized. Closest to furthest order, but # the order of any set of points of equal distance is random neighborhood = list(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3)) shuffle(neighborhood) neighborhood = sorted(neighborhood, key=lambda v: v[0] ** 2 + v[1] ** 2 + v[2] ** 2) for dx, dy, dz in neighborhood: zi = vox.z + dz yj = vox.y + dy xk = vox.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi)) for index in index_arr: if ( fungus[index]['form'] == FungusCellData.Form.CONIDIA and not fungus[index]['internalized'] and p_in > rg.random() ): fungus[index]['internalized'] = True self.append_to_phagosome(i, index, max_spores)
- def len_phagosome(self, index)
- 
Expand source codedef len_phagosome(self, index): cell = self[index] return len(np.argwhere(cell['phagosome'] != -1))
- def move(self, rec_r, grid, cyto, tissue, fungus: FungusCellList)
- 
Expand source codedef move(self, rec_r, grid, cyto, tissue, fungus: FungusCellList): for cell_index in self.alive(): cell = self[cell_index] cell_voxel = grid.get_voxel(cell['point']) valid_voxel_offsets = [] above_threshold_voxel_offsets = [] # iterate over nearby voxels, recording the cytokine levels for dx, dy, dz in itertools.product((-1, 0, 1), repeat=3): zi = cell_voxel.z + dz yj = cell_voxel.y + dy xk = cell_voxel.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): if tissue[zi, yj, xk] != TissueType.AIR.value: valid_voxel_offsets.append((dx, dy, dz)) if cyto[zi, yj, xk] >= rec_r: above_threshold_voxel_offsets.append((cyto[zi, yj, xk], (dx, dy, dz))) # pick a target for the move if len(above_threshold_voxel_offsets) > 0: # shuffle + sort (with _only_ 0-key, not lexicographic as tuples) ensures # randomization when there are equal top cytokine levels # note that numpy's shuffle will complain about ragged arrays shuffle(above_threshold_voxel_offsets) above_threshold_voxel_offsets = sorted( above_threshold_voxel_offsets, key=lambda x: x[0], reverse=True ) _, target_voxel_offset = above_threshold_voxel_offsets[0] elif len(valid_voxel_offsets) > 0: target_voxel_offset = choice(valid_voxel_offsets) else: raise AssertionError( 'This cell has no valid voxel to move to, including the one that it is in!' ) # Some nonsense here, b/c jump is happening at the voxel level, not the point level starting_cell_point = Point(x=cell['point'][2], y=cell['point'][1], z=cell['point'][0]) starting_cell_voxel = grid.get_voxel(starting_cell_point) ending_cell_voxel = grid.get_voxel( Point( x=grid.x[cell_voxel.x + target_voxel_offset[0]], y=grid.y[cell_voxel.y + target_voxel_offset[1]], z=grid.z[cell_voxel.z + target_voxel_offset[2]], ) ) ending_cell_point = ( starting_cell_point + grid.get_voxel_center(ending_cell_voxel) - grid.get_voxel_center(starting_cell_voxel) ) cell['point'] = ending_cell_point self.update_voxel_index([cell_index]) for i in range(0, self.len_phagosome(cell_index)): f_index = cell['phagosome'][i] fungus[f_index]['point'] = ending_cell_point fungus.update_voxel_index([f_index])
- def produce_cytokines(self, m_det, m_n, grid, fungus: FungusCellList, cyto)
- 
Expand source codedef produce_cytokines(self, m_det, m_n, grid, fungus: FungusCellList, cyto): for i in self.alive(): vox = grid.get_voxel(self[i]['point']) hyphae_count = 0 # Moore neighborhood neighborhood = tuple(itertools.product(tuple(range(-1 * m_det, m_det + 1)), repeat=3)) for dx, dy, dz in neighborhood: zi = vox.z + dz yj = vox.y + dy xk = vox.x + dx if grid.is_valid_voxel(Voxel(x=xk, y=yj, z=zi)): index_arr = fungus.get_cells_in_voxel(Voxel(x=xk, y=yj, z=zi)) for index in index_arr: if fungus[index]['form'] == FungusCellData.Form.HYPHAE: hyphae_count += 1 cyto[vox.z, vox.y, vox.x] = cyto[vox.z, vox.y, vox.x] + m_n * hyphae_count
- def recruit_new(self, rec_rate_ph, rec_r, p_rec_r, tissue, grid, cyto)
- 
Expand source codedef recruit_new(self, rec_rate_ph, rec_r, p_rec_r, tissue, grid, cyto): num_reps = rec_rate_ph # maximum number of macrophages recruited per time step cyto_index = np.argwhere(np.logical_and(tissue == TissueType.BLOOD.value, cyto >= rec_r)) if len(cyto_index) == 0: # nowhere to place cells return for _ in range(num_reps): if p_rec_r > rg.random(): ii = rg.integers(cyto_index.shape[0]) point = Point( x=grid.x[cyto_index[ii, 2]], y=grid.y[cyto_index[ii, 1]], z=grid.z[cyto_index[ii, 0]], ) # Do we really want these things to always be in the exact center of the voxel? # No we do not. Should not have any effect on model, but maybe some on # visualization. perturbation = rg.multivariate_normal( mean=[0.0, 0.0, 0.0], cov=[[0.25, 0.0, 0.0], [0.0, 0.25, 0.0], [0.0, 0.0, 0.25]] ) perturbation_magnitude = np.linalg.norm(perturbation) perturbation /= max(1.0, perturbation_magnitude) point += perturbation self.append(MacrophageCellData.create_cell(point=point))
- def remove_from_phagosome(self, index, pathogen_index)
- 
Expand source codedef remove_from_phagosome(self, index, pathogen_index): phagosome = self[index]['phagosome'] if pathogen_index in phagosome: itemindex = np.argwhere(phagosome == pathogen_index)[0][0] size = MacrophageCellList.len_phagosome(self, index) if itemindex == size - 1: # full phagosome phagosome[itemindex] = -1 return True else: phagosome[itemindex:-1] = phagosome[itemindex + 1 :] phagosome[-1] = -1 return True else: return False
- def remove_if_sporeless(self, val)
- 
Expand source codedef remove_if_sporeless(self, val): living = self.alive() living_len = len(living) num = int(val * living_len) if num == 0 and living_len > 0: num = 1 for _ in range(num): r = rg.integers(living_len) self.cell_data[living[r]]['dead'] = True
 Inherited members
- class MacrophageState (*, global_state: State, cells: MacrophageCellList = NOTHING)
- 
Base type intended to store the state for simulation modules. This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior. Method generated by attrs for class MacrophageState. Expand source codeclass MacrophageState(ModuleState): cells: MacrophageCellList = attr.ib(default=attr.Factory(cell_list_factory, takes_self=True)) rec_r: float p_rec_r: float m_abs: float m_n: float kill: float m_det: int rec_rate_ph: int time_m: float max_conidia_in_phag: int p_internalization: float rm: floatAncestorsClass variables- var cells : MacrophageCellList
- var kill : float
- var m_abs : float
- var m_det : int
- var m_n : float
- var max_conidia_in_phag : int
- var p_internalization : float
- var p_rec_r : float
- var rec_r : float
- var rec_rate_ph : int
- var rm : float
- var time_m : float
 Inherited members