Module nlisim.modules.mcp1

Expand source code
from typing import Any, Dict

import attr
import numpy as np

from nlisim.coordinates import Voxel
from nlisim.diffusion import apply_diffusion
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.modules.molecules import MoleculesState
from nlisim.state import State
from nlisim.util import turnover_rate


def molecule_grid_factory(self: 'MCP1State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)


@attr.s(kw_only=True, repr=False)
class MCP1State(ModuleState):
    grid: np.ndarray = attr.ib(
        default=attr.Factory(molecule_grid_factory, takes_self=True)
    )  # units: atto-mols
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    pneumocyte_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    pneumocyte_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    k_d: float  # units: aM


class MCP1(ModuleModel):
    """MCP1"""

    name = 'mcp1'
    StateClass = MCP1State

    def initialize(self, state: State) -> State:
        mcp1: MCP1State = state.mcp1

        # config file values
        mcp1.half_life = self.config.getfloat('half_life')  # units: min
        mcp1.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        mcp1.pneumocyte_secretion_rate = self.config.getfloat(
            'pneumocyte_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        mcp1.k_d = self.config.getfloat('k_d')  # units: aM

        # computed values
        mcp1.half_life_multiplier = 0.5 ** (
            self.time_step / mcp1.half_life
        )  # units in exponent: (min/step) / min -> 1/step
        # time unit conversions
        # units: (atto-mol * cell^-1 * h^-1 * (min * step^-1) / (min * hour^-1)
        #        = atto-mol * cell^-1 * step^-1
        mcp1.macrophage_secretion_rate_unit_t = mcp1.macrophage_secretion_rate * (
            self.time_step / 60
        )
        mcp1.pneumocyte_secretion_rate_unit_t = mcp1.pneumocyte_secretion_rate * (
            self.time_step / 60
        )

        return state

    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
        from nlisim.modules.pneumocyte import PneumocyteCellData, PneumocyteState

        mcp1: MCP1State = state.mcp1
        molecules: MoleculesState = state.molecules
        pneumocyte: PneumocyteState = state.pneumocyte
        macrophage: MacrophageState = state.macrophage
        grid: RectangularGrid = state.grid

        # interact with pneumocytes
        for pneumocyte_cell_index in pneumocyte.cells.alive():
            pneumocyte_cell: PneumocyteCellData = pneumocyte.cells[pneumocyte_cell_index]

            if pneumocyte_cell['tnfa']:
                pneumocyte_cell_voxel: Voxel = grid.get_voxel(pneumocyte_cell['point'])
                mcp1.grid[tuple(pneumocyte_cell_voxel)] += mcp1.pneumocyte_secretion_rate_unit_t

        # interact with macrophages
        for macrophage_cell_index in macrophage.cells.alive():
            macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]

            if macrophage_cell['tnfa']:
                macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])
                mcp1.grid[tuple(macrophage_cell_voxel)] += mcp1.macrophage_secretion_rate_unit_t

        # Degrade MCP1
        mcp1.grid *= mcp1.half_life_multiplier
        mcp1.grid *= turnover_rate(
            x=np.array(1.0, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )

        # Diffusion of MCP1
        mcp1.grid[:] = apply_diffusion(
            variable=mcp1.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )

        return state

    def summary_stats(self, state: State) -> Dict[str, Any]:
        from nlisim.util import TissueType

        mcp1: MCP1State = state.mcp1
        voxel_volume = state.voxel_volume
        mask = state.lung_tissue != TissueType.AIR

        return {
            'concentration (nM)': float(np.mean(mcp1.grid[mask]) / voxel_volume / 1e9),
        }

    def visualization_data(self, state: State):
        mcp1: MCP1State = state.mcp1
        return 'molecule', mcp1.grid

Functions

def molecule_grid_factory(self: MCP1State) ‑> numpy.ndarray
Expand source code
def molecule_grid_factory(self: 'MCP1State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)

Classes

class MCP1 (config: SimulationConfig)

MCP1

Expand source code
class MCP1(ModuleModel):
    """MCP1"""

    name = 'mcp1'
    StateClass = MCP1State

    def initialize(self, state: State) -> State:
        mcp1: MCP1State = state.mcp1

        # config file values
        mcp1.half_life = self.config.getfloat('half_life')  # units: min
        mcp1.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        mcp1.pneumocyte_secretion_rate = self.config.getfloat(
            'pneumocyte_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        mcp1.k_d = self.config.getfloat('k_d')  # units: aM

        # computed values
        mcp1.half_life_multiplier = 0.5 ** (
            self.time_step / mcp1.half_life
        )  # units in exponent: (min/step) / min -> 1/step
        # time unit conversions
        # units: (atto-mol * cell^-1 * h^-1 * (min * step^-1) / (min * hour^-1)
        #        = atto-mol * cell^-1 * step^-1
        mcp1.macrophage_secretion_rate_unit_t = mcp1.macrophage_secretion_rate * (
            self.time_step / 60
        )
        mcp1.pneumocyte_secretion_rate_unit_t = mcp1.pneumocyte_secretion_rate * (
            self.time_step / 60
        )

        return state

    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
        from nlisim.modules.pneumocyte import PneumocyteCellData, PneumocyteState

        mcp1: MCP1State = state.mcp1
        molecules: MoleculesState = state.molecules
        pneumocyte: PneumocyteState = state.pneumocyte
        macrophage: MacrophageState = state.macrophage
        grid: RectangularGrid = state.grid

        # interact with pneumocytes
        for pneumocyte_cell_index in pneumocyte.cells.alive():
            pneumocyte_cell: PneumocyteCellData = pneumocyte.cells[pneumocyte_cell_index]

            if pneumocyte_cell['tnfa']:
                pneumocyte_cell_voxel: Voxel = grid.get_voxel(pneumocyte_cell['point'])
                mcp1.grid[tuple(pneumocyte_cell_voxel)] += mcp1.pneumocyte_secretion_rate_unit_t

        # interact with macrophages
        for macrophage_cell_index in macrophage.cells.alive():
            macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]

            if macrophage_cell['tnfa']:
                macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])
                mcp1.grid[tuple(macrophage_cell_voxel)] += mcp1.macrophage_secretion_rate_unit_t

        # Degrade MCP1
        mcp1.grid *= mcp1.half_life_multiplier
        mcp1.grid *= turnover_rate(
            x=np.array(1.0, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )

        # Diffusion of MCP1
        mcp1.grid[:] = apply_diffusion(
            variable=mcp1.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )

        return state

    def summary_stats(self, state: State) -> Dict[str, Any]:
        from nlisim.util import TissueType

        mcp1: MCP1State = state.mcp1
        voxel_volume = state.voxel_volume
        mask = state.lung_tissue != TissueType.AIR

        return {
            'concentration (nM)': float(np.mean(mcp1.grid[mask]) / voxel_volume / 1e9),
        }

    def visualization_data(self, state: State):
        mcp1: MCP1State = state.mcp1
        return 'molecule', mcp1.grid

Ancestors

Methods

def advance(self, state: State, previous_time: float) ‑> State

Advance the state by a single time step.

Expand source code
def advance(self, state: State, previous_time: float) -> State:
    """Advance the state by a single time step."""
    from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
    from nlisim.modules.pneumocyte import PneumocyteCellData, PneumocyteState

    mcp1: MCP1State = state.mcp1
    molecules: MoleculesState = state.molecules
    pneumocyte: PneumocyteState = state.pneumocyte
    macrophage: MacrophageState = state.macrophage
    grid: RectangularGrid = state.grid

    # interact with pneumocytes
    for pneumocyte_cell_index in pneumocyte.cells.alive():
        pneumocyte_cell: PneumocyteCellData = pneumocyte.cells[pneumocyte_cell_index]

        if pneumocyte_cell['tnfa']:
            pneumocyte_cell_voxel: Voxel = grid.get_voxel(pneumocyte_cell['point'])
            mcp1.grid[tuple(pneumocyte_cell_voxel)] += mcp1.pneumocyte_secretion_rate_unit_t

    # interact with macrophages
    for macrophage_cell_index in macrophage.cells.alive():
        macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]

        if macrophage_cell['tnfa']:
            macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])
            mcp1.grid[tuple(macrophage_cell_voxel)] += mcp1.macrophage_secretion_rate_unit_t

    # Degrade MCP1
    mcp1.grid *= mcp1.half_life_multiplier
    mcp1.grid *= turnover_rate(
        x=np.array(1.0, dtype=np.float64),
        x_system=0.0,
        base_turnover_rate=molecules.turnover_rate,
        rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
    )

    # Diffusion of MCP1
    mcp1.grid[:] = apply_diffusion(
        variable=mcp1.grid,
        laplacian=molecules.laplacian,
        diffusivity=molecules.diffusion_constant,
        dt=self.time_step,
    )

    return state

Inherited members

class MCP1State (*, global_state: State, grid: numpy.ndarray = NOTHING)

Base type intended to store the state for simulation modules.

This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior.

Method generated by attrs for class MCP1State.

Expand source code
class MCP1State(ModuleState):
    grid: np.ndarray = attr.ib(
        default=attr.Factory(molecule_grid_factory, takes_self=True)
    )  # units: atto-mols
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    pneumocyte_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    pneumocyte_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    k_d: float  # units: aM

Ancestors

Class variables

var grid : numpy.ndarray
var half_life : float
var half_life_multiplier : float
var k_d : float
var macrophage_secretion_rate : float
var macrophage_secretion_rate_unit_t : float
var pneumocyte_secretion_rate : float
var pneumocyte_secretion_rate_unit_t : float

Inherited members