Module nlisim.modules.il8
Expand source code
from typing import Any, Dict
import attr
import numpy as np
from nlisim.coordinates import Voxel
from nlisim.diffusion import apply_diffusion
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.modules.molecules import MoleculesState
from nlisim.random import rg
from nlisim.state import State
from nlisim.util import activation_function, turnover_rate
def molecule_grid_factory(self: 'IL8State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)
@attr.s(kw_only=True, repr=False)
class IL8State(ModuleState):
    grid: np.ndarray = attr.ib(default=attr.Factory(molecule_grid_factory, takes_self=True))
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    neutrophil_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    pneumocyte_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    neutrophil_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    pneumocyte_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * step^-1
    k_d: float  # aM
class IL8(ModuleModel):
    """IL8"""
    name = 'il8'
    StateClass = IL8State
    def initialize(self, state: State) -> State:
        il8: IL8State = state.il8
        # config file values
        il8.half_life = self.config.getfloat('half_life')  # units: min
        il8.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il8.neutrophil_secretion_rate = self.config.getfloat(
            'neutrophil_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il8.pneumocyte_secretion_rate = self.config.getfloat(
            'pneumocyte_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il8.k_d = self.config.getfloat('k_d')
        # computed values
        il8.half_life_multiplier = 0.5 ** (
            1 * self.time_step / il8.half_life
        )  # units: step * (min/step) / min -> 1
        # time unit conversions
        # units: (atto-mol * cell^-1 * h^-1 * (min * step^-1) / (min * hour^-1)
        #        = atto-mol * cell^-1 * step^-1
        il8.macrophage_secretion_rate_unit_t = il8.macrophage_secretion_rate * (self.time_step / 60)
        il8.neutrophil_secretion_rate_unit_t = il8.neutrophil_secretion_rate * (self.time_step / 60)
        il8.pneumocyte_secretion_rate_unit_t = il8.pneumocyte_secretion_rate * (self.time_step / 60)
        return state
    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.neutrophil import NeutrophilCellData, NeutrophilState
        from nlisim.modules.phagocyte import PhagocyteStatus
        il8: IL8State = state.il8
        molecules: MoleculesState = state.molecules
        neutrophil: NeutrophilState = state.neutrophil
        voxel_volume: float = state.voxel_volume
        grid: RectangularGrid = state.grid
        # IL8 activates neutrophils
        for neutrophil_cell_index in neutrophil.cells.alive():
            neutrophil_cell: NeutrophilCellData = neutrophil.cells[neutrophil_cell_index]
            if neutrophil_cell['status'] in {PhagocyteStatus.RESTING or PhagocyteStatus.ACTIVE}:
                neutrophil_cell_voxel: Voxel = grid.get_voxel(neutrophil_cell['point'])
                if (
                    activation_function(
                        x=il8.grid[tuple(neutrophil_cell_voxel)],
                        k_d=il8.k_d,
                        h=self.time_step / 60,  # units: (min/step) / (min/hour)
                        volume=voxel_volume,
                        b=1,
                    )
                    > rg.uniform()
                ):
                    neutrophil_cell['status'] = PhagocyteStatus.ACTIVE
                    neutrophil_cell['status_iteration'] = 0
        # Degrade IL8
        il8.grid *= il8.half_life_multiplier
        il8.grid *= turnover_rate(
            x=np.ones(shape=il8.grid.shape, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )
        # Diffusion of IL8
        il8.grid[:] = apply_diffusion(
            variable=il8.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )
        return state
    def summary_stats(self, state: State) -> Dict[str, Any]:
        il8: IL8State = state.il8
        voxel_volume = state.voxel_volume
        return {
            'concentration (nM)': float(np.mean(il8.grid) / voxel_volume / 1e9),
        }
    def visualization_data(self, state: State):
        il8: IL8State = state.il8
        return 'molecule', il8.gridFunctions
- def molecule_grid_factory(self: IL8State) ‑> numpy.ndarray
- 
Expand source codedef molecule_grid_factory(self: 'IL8State') -> np.ndarray: return np.zeros(shape=self.global_state.grid.shape, dtype=float)
Classes
- class IL8 (config: SimulationConfig)
- 
IL8 Expand source codeclass IL8(ModuleModel): """IL8""" name = 'il8' StateClass = IL8State def initialize(self, state: State) -> State: il8: IL8State = state.il8 # config file values il8.half_life = self.config.getfloat('half_life') # units: min il8.macrophage_secretion_rate = self.config.getfloat( 'macrophage_secretion_rate' ) # units: atto-mol * cell^-1 * h^-1 il8.neutrophil_secretion_rate = self.config.getfloat( 'neutrophil_secretion_rate' ) # units: atto-mol * cell^-1 * h^-1 il8.pneumocyte_secretion_rate = self.config.getfloat( 'pneumocyte_secretion_rate' ) # units: atto-mol * cell^-1 * h^-1 il8.k_d = self.config.getfloat('k_d') # computed values il8.half_life_multiplier = 0.5 ** ( 1 * self.time_step / il8.half_life ) # units: step * (min/step) / min -> 1 # time unit conversions # units: (atto-mol * cell^-1 * h^-1 * (min * step^-1) / (min * hour^-1) # = atto-mol * cell^-1 * step^-1 il8.macrophage_secretion_rate_unit_t = il8.macrophage_secretion_rate * (self.time_step / 60) il8.neutrophil_secretion_rate_unit_t = il8.neutrophil_secretion_rate * (self.time_step / 60) il8.pneumocyte_secretion_rate_unit_t = il8.pneumocyte_secretion_rate * (self.time_step / 60) return state def advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.neutrophil import NeutrophilCellData, NeutrophilState from nlisim.modules.phagocyte import PhagocyteStatus il8: IL8State = state.il8 molecules: MoleculesState = state.molecules neutrophil: NeutrophilState = state.neutrophil voxel_volume: float = state.voxel_volume grid: RectangularGrid = state.grid # IL8 activates neutrophils for neutrophil_cell_index in neutrophil.cells.alive(): neutrophil_cell: NeutrophilCellData = neutrophil.cells[neutrophil_cell_index] if neutrophil_cell['status'] in {PhagocyteStatus.RESTING or PhagocyteStatus.ACTIVE}: neutrophil_cell_voxel: Voxel = grid.get_voxel(neutrophil_cell['point']) if ( activation_function( x=il8.grid[tuple(neutrophil_cell_voxel)], k_d=il8.k_d, h=self.time_step / 60, # units: (min/step) / (min/hour) volume=voxel_volume, b=1, ) > rg.uniform() ): neutrophil_cell['status'] = PhagocyteStatus.ACTIVE neutrophil_cell['status_iteration'] = 0 # Degrade IL8 il8.grid *= il8.half_life_multiplier il8.grid *= turnover_rate( x=np.ones(shape=il8.grid.shape, dtype=np.float64), x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of IL8 il8.grid[:] = apply_diffusion( variable=il8.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state def summary_stats(self, state: State) -> Dict[str, Any]: il8: IL8State = state.il8 voxel_volume = state.voxel_volume return { 'concentration (nM)': float(np.mean(il8.grid) / voxel_volume / 1e9), } def visualization_data(self, state: State): il8: IL8State = state.il8 return 'molecule', il8.gridAncestorsMethods- def advance(self, state: State, previous_time: float) ‑> State
- 
Advance the state by a single time step. Expand source codedef advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.neutrophil import NeutrophilCellData, NeutrophilState from nlisim.modules.phagocyte import PhagocyteStatus il8: IL8State = state.il8 molecules: MoleculesState = state.molecules neutrophil: NeutrophilState = state.neutrophil voxel_volume: float = state.voxel_volume grid: RectangularGrid = state.grid # IL8 activates neutrophils for neutrophil_cell_index in neutrophil.cells.alive(): neutrophil_cell: NeutrophilCellData = neutrophil.cells[neutrophil_cell_index] if neutrophil_cell['status'] in {PhagocyteStatus.RESTING or PhagocyteStatus.ACTIVE}: neutrophil_cell_voxel: Voxel = grid.get_voxel(neutrophil_cell['point']) if ( activation_function( x=il8.grid[tuple(neutrophil_cell_voxel)], k_d=il8.k_d, h=self.time_step / 60, # units: (min/step) / (min/hour) volume=voxel_volume, b=1, ) > rg.uniform() ): neutrophil_cell['status'] = PhagocyteStatus.ACTIVE neutrophil_cell['status_iteration'] = 0 # Degrade IL8 il8.grid *= il8.half_life_multiplier il8.grid *= turnover_rate( x=np.ones(shape=il8.grid.shape, dtype=np.float64), x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of IL8 il8.grid[:] = apply_diffusion( variable=il8.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state
 Inherited members
- class IL8State (*, global_state: State, grid: numpy.ndarray = NOTHING)
- 
Base type intended to store the state for simulation modules. This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior. Method generated by attrs for class IL8State. Expand source codeclass IL8State(ModuleState): grid: np.ndarray = attr.ib(default=attr.Factory(molecule_grid_factory, takes_self=True)) half_life: float # units: min half_life_multiplier: float # units: proportion macrophage_secretion_rate: float # units: atto-mol * cell^-1 * h^-1 neutrophil_secretion_rate: float # units: atto-mol * cell^-1 * h^-1 pneumocyte_secretion_rate: float # units: atto-mol * cell^-1 * h^-1 macrophage_secretion_rate_unit_t: float # units: atto-mol * cell^-1 * step^-1 neutrophil_secretion_rate_unit_t: float # units: atto-mol * cell^-1 * step^-1 pneumocyte_secretion_rate_unit_t: float # units: atto-mol * cell^-1 * step^-1 k_d: float # aMAncestorsClass variables- var grid : numpy.ndarray
- var half_life : float
- var half_life_multiplier : float
- var k_d : float
- var macrophage_secretion_rate : float
- var macrophage_secretion_rate_unit_t : float
- var neutrophil_secretion_rate : float
- var neutrophil_secretion_rate_unit_t : float
- var pneumocyte_secretion_rate : float
- var pneumocyte_secretion_rate_unit_t : float
 Inherited members