Module nlisim.modules.il10
Expand source code
from typing import Any, Dict
import attr
import numpy as np
from nlisim.coordinates import Voxel
from nlisim.diffusion import apply_diffusion
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.modules.molecules import MoleculesState
from nlisim.random import rg
from nlisim.state import State
from nlisim.util import activation_function, turnover_rate
def molecule_grid_factory(self: 'IL10State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)
@attr.s(kw_only=True, repr=False)
class IL10State(ModuleState):
    grid: np.ndarray = attr.ib(
        default=attr.Factory(molecule_grid_factory, takes_self=True)
    )  # units: aM
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * h^-1
    k_d: float  # units: aM
class IL10(ModuleModel):
    """IL10"""
    name = 'il10'
    StateClass = IL10State
    def initialize(self, state: State) -> State:
        il10: IL10State = state.il10
        # config file values
        il10.half_life = self.config.getfloat('half_life')  # units: min
        il10.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il10.k_d = self.config.getfloat('k_d')  # units: aM
        # computed values
        il10.half_life_multiplier = 0.5 ** (
            self.time_step / il10.half_life
        )  # units in exponent: (min/step) / min -> 1/step
        # time unit conversions
        il10.macrophage_secretion_rate_unit_t = il10.macrophage_secretion_rate * (
            self.time_step / 60
        )  # units: atto-mol * cell^-1 * h^-1 * (min/step) / (min/hour)
        return state
    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
        from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus
        il10: IL10State = state.il10
        macrophage: MacrophageState = state.macrophage
        molecules: MoleculesState = state.molecules
        voxel_volume: float = state.voxel_volume
        grid: RectangularGrid = state.grid
        # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10
        for macrophage_cell_index in macrophage.cells.alive():
            macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]
            macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])
            if (
                macrophage_cell['status'] == PhagocyteStatus.ACTIVE
                and macrophage_cell['state'] == PhagocyteState.INTERACTING
            ):
                il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t
            if macrophage_cell['status'] not in {
                PhagocyteStatus.DEAD,
                PhagocyteStatus.APOPTOTIC,
                PhagocyteStatus.NECROTIC,
            } and (
                activation_function(
                    x=il10.grid[tuple(macrophage_cell_voxel)],
                    k_d=il10.k_d,
                    h=self.time_step / 60,  # units: (min/step) / (min/hour)
                    volume=voxel_volume,
                    b=1,
                )
                > rg.uniform()
            ):
                # inactive cells stay inactive, others become inactivating
                if macrophage_cell['status'] != PhagocyteStatus.INACTIVE:
                    macrophage_cell['status'] = PhagocyteStatus.INACTIVATING
                macrophage_cell['status_iteration'] = 0
        # Degrade IL10
        il10.grid *= il10.half_life_multiplier
        il10.grid *= turnover_rate(
            x=np.ones(shape=il10.grid.shape, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )
        # Diffusion of IL10
        il10.grid[:] = apply_diffusion(
            variable=il10.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )
        return state
    def summary_stats(self, state: State) -> Dict[str, Any]:
        from nlisim.util import TissueType
        il10: IL10State = state.il10
        voxel_volume = state.voxel_volume
        mask = state.lung_tissue != TissueType.AIR
        return {
            'concentration (nM)': float(np.mean(il10.grid[mask]) / voxel_volume / 1e9),
        }
    def visualization_data(self, state: State):
        il10: IL10State = state.il10
        return 'molecule', il10.gridFunctions
- def molecule_grid_factory(self: IL10State) ‑> numpy.ndarray
- 
Expand source codedef molecule_grid_factory(self: 'IL10State') -> np.ndarray: return np.zeros(shape=self.global_state.grid.shape, dtype=float)
Classes
- class IL10 (config: SimulationConfig)
- 
IL10 Expand source codeclass IL10(ModuleModel): """IL10""" name = 'il10' StateClass = IL10State def initialize(self, state: State) -> State: il10: IL10State = state.il10 # config file values il10.half_life = self.config.getfloat('half_life') # units: min il10.macrophage_secretion_rate = self.config.getfloat( 'macrophage_secretion_rate' ) # units: atto-mol * cell^-1 * h^-1 il10.k_d = self.config.getfloat('k_d') # units: aM # computed values il10.half_life_multiplier = 0.5 ** ( self.time_step / il10.half_life ) # units in exponent: (min/step) / min -> 1/step # time unit conversions il10.macrophage_secretion_rate_unit_t = il10.macrophage_secretion_rate * ( self.time_step / 60 ) # units: atto-mol * cell^-1 * h^-1 * (min/step) / (min/hour) return state def advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.macrophage import MacrophageCellData, MacrophageState from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus il10: IL10State = state.il10 macrophage: MacrophageState = state.macrophage molecules: MoleculesState = state.molecules voxel_volume: float = state.voxel_volume grid: RectangularGrid = state.grid # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10 for macrophage_cell_index in macrophage.cells.alive(): macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index] macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point']) if ( macrophage_cell['status'] == PhagocyteStatus.ACTIVE and macrophage_cell['state'] == PhagocyteState.INTERACTING ): il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t if macrophage_cell['status'] not in { PhagocyteStatus.DEAD, PhagocyteStatus.APOPTOTIC, PhagocyteStatus.NECROTIC, } and ( activation_function( x=il10.grid[tuple(macrophage_cell_voxel)], k_d=il10.k_d, h=self.time_step / 60, # units: (min/step) / (min/hour) volume=voxel_volume, b=1, ) > rg.uniform() ): # inactive cells stay inactive, others become inactivating if macrophage_cell['status'] != PhagocyteStatus.INACTIVE: macrophage_cell['status'] = PhagocyteStatus.INACTIVATING macrophage_cell['status_iteration'] = 0 # Degrade IL10 il10.grid *= il10.half_life_multiplier il10.grid *= turnover_rate( x=np.ones(shape=il10.grid.shape, dtype=np.float64), x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of IL10 il10.grid[:] = apply_diffusion( variable=il10.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state def summary_stats(self, state: State) -> Dict[str, Any]: from nlisim.util import TissueType il10: IL10State = state.il10 voxel_volume = state.voxel_volume mask = state.lung_tissue != TissueType.AIR return { 'concentration (nM)': float(np.mean(il10.grid[mask]) / voxel_volume / 1e9), } def visualization_data(self, state: State): il10: IL10State = state.il10 return 'molecule', il10.gridAncestorsMethods- def advance(self, state: State, previous_time: float) ‑> State
- 
Advance the state by a single time step. Expand source codedef advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.macrophage import MacrophageCellData, MacrophageState from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus il10: IL10State = state.il10 macrophage: MacrophageState = state.macrophage molecules: MoleculesState = state.molecules voxel_volume: float = state.voxel_volume grid: RectangularGrid = state.grid # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10 for macrophage_cell_index in macrophage.cells.alive(): macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index] macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point']) if ( macrophage_cell['status'] == PhagocyteStatus.ACTIVE and macrophage_cell['state'] == PhagocyteState.INTERACTING ): il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t if macrophage_cell['status'] not in { PhagocyteStatus.DEAD, PhagocyteStatus.APOPTOTIC, PhagocyteStatus.NECROTIC, } and ( activation_function( x=il10.grid[tuple(macrophage_cell_voxel)], k_d=il10.k_d, h=self.time_step / 60, # units: (min/step) / (min/hour) volume=voxel_volume, b=1, ) > rg.uniform() ): # inactive cells stay inactive, others become inactivating if macrophage_cell['status'] != PhagocyteStatus.INACTIVE: macrophage_cell['status'] = PhagocyteStatus.INACTIVATING macrophage_cell['status_iteration'] = 0 # Degrade IL10 il10.grid *= il10.half_life_multiplier il10.grid *= turnover_rate( x=np.ones(shape=il10.grid.shape, dtype=np.float64), x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of IL10 il10.grid[:] = apply_diffusion( variable=il10.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state
 Inherited members
- class IL10State (*, global_state: State, grid: numpy.ndarray = NOTHING)
- 
Base type intended to store the state for simulation modules. This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior. Method generated by attrs for class IL10State. Expand source codeclass IL10State(ModuleState): grid: np.ndarray = attr.ib( default=attr.Factory(molecule_grid_factory, takes_self=True) ) # units: aM half_life: float # units: min half_life_multiplier: float # units: proportion macrophage_secretion_rate: float # units: atto-mol * cell^-1 * h^-1 macrophage_secretion_rate_unit_t: float # units: atto-mol * cell^-1 * h^-1 k_d: float # units: aMAncestorsClass variables- var grid : numpy.ndarray
- var half_life : float
- var half_life_multiplier : float
- var k_d : float
- var macrophage_secretion_rate : float
- var macrophage_secretion_rate_unit_t : float
 Inherited members