Module nlisim.modules.il10

Expand source code
from typing import Any, Dict

import attr
import numpy as np

from nlisim.coordinates import Voxel
from nlisim.diffusion import apply_diffusion
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.modules.molecules import MoleculesState
from nlisim.random import rg
from nlisim.state import State
from nlisim.util import activation_function, turnover_rate


def molecule_grid_factory(self: 'IL10State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)


@attr.s(kw_only=True, repr=False)
class IL10State(ModuleState):
    grid: np.ndarray = attr.ib(
        default=attr.Factory(molecule_grid_factory, takes_self=True)
    )  # units: aM
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * h^-1
    k_d: float  # units: aM


class IL10(ModuleModel):
    """IL10"""

    name = 'il10'
    StateClass = IL10State

    def initialize(self, state: State) -> State:
        il10: IL10State = state.il10

        # config file values
        il10.half_life = self.config.getfloat('half_life')  # units: min
        il10.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il10.k_d = self.config.getfloat('k_d')  # units: aM

        # computed values
        il10.half_life_multiplier = 0.5 ** (
            self.time_step / il10.half_life
        )  # units in exponent: (min/step) / min -> 1/step
        # time unit conversions
        il10.macrophage_secretion_rate_unit_t = il10.macrophage_secretion_rate * (
            self.time_step / 60
        )  # units: atto-mol * cell^-1 * h^-1 * (min/step) / (min/hour)

        return state

    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
        from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus

        il10: IL10State = state.il10
        macrophage: MacrophageState = state.macrophage
        molecules: MoleculesState = state.molecules
        voxel_volume: float = state.voxel_volume
        grid: RectangularGrid = state.grid

        # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10
        for macrophage_cell_index in macrophage.cells.alive():
            macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]
            macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])

            if (
                macrophage_cell['status'] == PhagocyteStatus.ACTIVE
                and macrophage_cell['state'] == PhagocyteState.INTERACTING
            ):
                il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t

            if macrophage_cell['status'] not in {
                PhagocyteStatus.DEAD,
                PhagocyteStatus.APOPTOTIC,
                PhagocyteStatus.NECROTIC,
            } and (
                activation_function(
                    x=il10.grid[tuple(macrophage_cell_voxel)],
                    k_d=il10.k_d,
                    h=self.time_step / 60,  # units: (min/step) / (min/hour)
                    volume=voxel_volume,
                    b=1,
                )
                > rg.uniform()
            ):
                # inactive cells stay inactive, others become inactivating
                if macrophage_cell['status'] != PhagocyteStatus.INACTIVE:
                    macrophage_cell['status'] = PhagocyteStatus.INACTIVATING
                macrophage_cell['status_iteration'] = 0

        # Degrade IL10
        il10.grid *= il10.half_life_multiplier
        il10.grid *= turnover_rate(
            x=np.ones(shape=il10.grid.shape, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )

        # Diffusion of IL10
        il10.grid[:] = apply_diffusion(
            variable=il10.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )

        return state

    def summary_stats(self, state: State) -> Dict[str, Any]:
        from nlisim.util import TissueType

        il10: IL10State = state.il10
        voxel_volume = state.voxel_volume
        mask = state.lung_tissue != TissueType.AIR

        return {
            'concentration (nM)': float(np.mean(il10.grid[mask]) / voxel_volume / 1e9),
        }

    def visualization_data(self, state: State):
        il10: IL10State = state.il10
        return 'molecule', il10.grid

Functions

def molecule_grid_factory(self: IL10State) ‑> numpy.ndarray
Expand source code
def molecule_grid_factory(self: 'IL10State') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)

Classes

class IL10 (config: SimulationConfig)

IL10

Expand source code
class IL10(ModuleModel):
    """IL10"""

    name = 'il10'
    StateClass = IL10State

    def initialize(self, state: State) -> State:
        il10: IL10State = state.il10

        # config file values
        il10.half_life = self.config.getfloat('half_life')  # units: min
        il10.macrophage_secretion_rate = self.config.getfloat(
            'macrophage_secretion_rate'
        )  # units: atto-mol * cell^-1 * h^-1
        il10.k_d = self.config.getfloat('k_d')  # units: aM

        # computed values
        il10.half_life_multiplier = 0.5 ** (
            self.time_step / il10.half_life
        )  # units in exponent: (min/step) / min -> 1/step
        # time unit conversions
        il10.macrophage_secretion_rate_unit_t = il10.macrophage_secretion_rate * (
            self.time_step / 60
        )  # units: atto-mol * cell^-1 * h^-1 * (min/step) / (min/hour)

        return state

    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
        from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus

        il10: IL10State = state.il10
        macrophage: MacrophageState = state.macrophage
        molecules: MoleculesState = state.molecules
        voxel_volume: float = state.voxel_volume
        grid: RectangularGrid = state.grid

        # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10
        for macrophage_cell_index in macrophage.cells.alive():
            macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]
            macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])

            if (
                macrophage_cell['status'] == PhagocyteStatus.ACTIVE
                and macrophage_cell['state'] == PhagocyteState.INTERACTING
            ):
                il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t

            if macrophage_cell['status'] not in {
                PhagocyteStatus.DEAD,
                PhagocyteStatus.APOPTOTIC,
                PhagocyteStatus.NECROTIC,
            } and (
                activation_function(
                    x=il10.grid[tuple(macrophage_cell_voxel)],
                    k_d=il10.k_d,
                    h=self.time_step / 60,  # units: (min/step) / (min/hour)
                    volume=voxel_volume,
                    b=1,
                )
                > rg.uniform()
            ):
                # inactive cells stay inactive, others become inactivating
                if macrophage_cell['status'] != PhagocyteStatus.INACTIVE:
                    macrophage_cell['status'] = PhagocyteStatus.INACTIVATING
                macrophage_cell['status_iteration'] = 0

        # Degrade IL10
        il10.grid *= il10.half_life_multiplier
        il10.grid *= turnover_rate(
            x=np.ones(shape=il10.grid.shape, dtype=np.float64),
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )

        # Diffusion of IL10
        il10.grid[:] = apply_diffusion(
            variable=il10.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )

        return state

    def summary_stats(self, state: State) -> Dict[str, Any]:
        from nlisim.util import TissueType

        il10: IL10State = state.il10
        voxel_volume = state.voxel_volume
        mask = state.lung_tissue != TissueType.AIR

        return {
            'concentration (nM)': float(np.mean(il10.grid[mask]) / voxel_volume / 1e9),
        }

    def visualization_data(self, state: State):
        il10: IL10State = state.il10
        return 'molecule', il10.grid

Ancestors

Methods

def advance(self, state: State, previous_time: float) ‑> State

Advance the state by a single time step.

Expand source code
def advance(self, state: State, previous_time: float) -> State:
    """Advance the state by a single time step."""
    from nlisim.modules.macrophage import MacrophageCellData, MacrophageState
    from nlisim.modules.phagocyte import PhagocyteState, PhagocyteStatus

    il10: IL10State = state.il10
    macrophage: MacrophageState = state.macrophage
    molecules: MoleculesState = state.molecules
    voxel_volume: float = state.voxel_volume
    grid: RectangularGrid = state.grid

    # active Macrophages secrete il10 and non-dead macrophages can become inactivated by il10
    for macrophage_cell_index in macrophage.cells.alive():
        macrophage_cell: MacrophageCellData = macrophage.cells[macrophage_cell_index]
        macrophage_cell_voxel: Voxel = grid.get_voxel(macrophage_cell['point'])

        if (
            macrophage_cell['status'] == PhagocyteStatus.ACTIVE
            and macrophage_cell['state'] == PhagocyteState.INTERACTING
        ):
            il10.grid[tuple(macrophage_cell_voxel)] += il10.macrophage_secretion_rate_unit_t

        if macrophage_cell['status'] not in {
            PhagocyteStatus.DEAD,
            PhagocyteStatus.APOPTOTIC,
            PhagocyteStatus.NECROTIC,
        } and (
            activation_function(
                x=il10.grid[tuple(macrophage_cell_voxel)],
                k_d=il10.k_d,
                h=self.time_step / 60,  # units: (min/step) / (min/hour)
                volume=voxel_volume,
                b=1,
            )
            > rg.uniform()
        ):
            # inactive cells stay inactive, others become inactivating
            if macrophage_cell['status'] != PhagocyteStatus.INACTIVE:
                macrophage_cell['status'] = PhagocyteStatus.INACTIVATING
            macrophage_cell['status_iteration'] = 0

    # Degrade IL10
    il10.grid *= il10.half_life_multiplier
    il10.grid *= turnover_rate(
        x=np.ones(shape=il10.grid.shape, dtype=np.float64),
        x_system=0.0,
        base_turnover_rate=molecules.turnover_rate,
        rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
    )

    # Diffusion of IL10
    il10.grid[:] = apply_diffusion(
        variable=il10.grid,
        laplacian=molecules.laplacian,
        diffusivity=molecules.diffusion_constant,
        dt=self.time_step,
    )

    return state

Inherited members

class IL10State (*, global_state: State, grid: numpy.ndarray = NOTHING)

Base type intended to store the state for simulation modules.

This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior.

Method generated by attrs for class IL10State.

Expand source code
class IL10State(ModuleState):
    grid: np.ndarray = attr.ib(
        default=attr.Factory(molecule_grid_factory, takes_self=True)
    )  # units: aM
    half_life: float  # units: min
    half_life_multiplier: float  # units: proportion
    macrophage_secretion_rate: float  # units: atto-mol * cell^-1 * h^-1
    macrophage_secretion_rate_unit_t: float  # units: atto-mol * cell^-1 * h^-1
    k_d: float  # units: aM

Ancestors

Class variables

var grid : numpy.ndarray
var half_life : float
var half_life_multiplier : float
var k_d : float
var macrophage_secretion_rate : float
var macrophage_secretion_rate_unit_t : float

Inherited members