Module nlisim.modules.hemoglobin
Expand source code
from typing import Any, Dict
import attr
from attr import attrib, attrs
import numpy as np
from nlisim.coordinates import Voxel
from nlisim.diffusion import apply_diffusion
from nlisim.grid import RectangularGrid
from nlisim.module import ModuleModel, ModuleState
from nlisim.modules.molecules import MoleculesState
from nlisim.state import State
from nlisim.util import turnover_rate
def molecule_grid_factory(self: 'HemoglobinState') -> np.ndarray:
    return np.zeros(shape=self.global_state.grid.shape, dtype=float)
@attrs(kw_only=True, repr=False)
class HemoglobinState(ModuleState):
    grid: np.ndarray = attrib(default=attr.Factory(molecule_grid_factory, takes_self=True))
    uptake_rate: float
    ma_heme_import_rate: float
class Hemoglobin(ModuleModel):
    """Hemoglobin"""
    name = 'hemoglobin'
    StateClass = HemoglobinState
    def initialize(self, state: State) -> State:
        hemoglobin: HemoglobinState = state.hemoglobin
        # config file values
        hemoglobin.uptake_rate = self.config.getfloat('uptake_rate')
        hemoglobin.ma_heme_import_rate = self.config.getfloat('ma_heme_import_rate')
        # computed values (none)
        return state
    def advance(self, state: State, previous_time: float) -> State:
        """Advance the state by a single time step."""
        from nlisim.modules.afumigatus import (
            AfumigatusCellData,
            AfumigatusCellStatus,
            AfumigatusState,
        )
        hemoglobin: HemoglobinState = state.hemoglobin
        molecules: MoleculesState = state.molecules
        afumigatus: AfumigatusState = state.afumigatus
        grid: RectangularGrid = state.grid
        # afumigatus uptakes iron from hemoglobin
        for afumigatus_cell_index in afumigatus.cells.alive():
            afumigatus_cell: AfumigatusCellData = afumigatus.cells[afumigatus_cell_index]
            if afumigatus_cell['status'] in {
                AfumigatusCellStatus.HYPHAE,
                AfumigatusCellStatus.GERM_TUBE,
            }:
                afumigatus_cell_voxel: Voxel = grid.get_voxel(afumigatus_cell['point'])
                fungal_absorbed_hemoglobin = (
                    hemoglobin.uptake_rate * hemoglobin.grid[tuple(afumigatus_cell_voxel)]
                )
                hemoglobin.grid[tuple(afumigatus_cell_voxel)] -= fungal_absorbed_hemoglobin
                afumigatus_cell['iron_pool'] += 4 * fungal_absorbed_hemoglobin
        # Degrade Hemoglobin
        hemoglobin.grid *= turnover_rate(
            x=hemoglobin.grid,
            x_system=0.0,
            base_turnover_rate=molecules.turnover_rate,
            rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t,
        )
        # Diffusion of Hemoglobin
        hemoglobin.grid[:] = apply_diffusion(
            variable=hemoglobin.grid,
            laplacian=molecules.laplacian,
            diffusivity=molecules.diffusion_constant,
            dt=self.time_step,
        )
        return state
    def summary_stats(self, state: State) -> Dict[str, Any]:
        hemoglobin: HemoglobinState = state.hemoglobin
        voxel_volume = state.voxel_volume
        return {
            'concentration (nM)': float(np.mean(hemoglobin.grid) / voxel_volume / 1e9),
        }
    def visualization_data(self, state: State):
        hemoglobin: HemoglobinState = state.hemoglobin
        return 'molecule', hemoglobin.gridFunctions
- def molecule_grid_factory(self: HemoglobinState) ‑> numpy.ndarray
- 
Expand source codedef molecule_grid_factory(self: 'HemoglobinState') -> np.ndarray: return np.zeros(shape=self.global_state.grid.shape, dtype=float)
Classes
- class Hemoglobin (config: SimulationConfig)
- 
Hemoglobin Expand source codeclass Hemoglobin(ModuleModel): """Hemoglobin""" name = 'hemoglobin' StateClass = HemoglobinState def initialize(self, state: State) -> State: hemoglobin: HemoglobinState = state.hemoglobin # config file values hemoglobin.uptake_rate = self.config.getfloat('uptake_rate') hemoglobin.ma_heme_import_rate = self.config.getfloat('ma_heme_import_rate') # computed values (none) return state def advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.afumigatus import ( AfumigatusCellData, AfumigatusCellStatus, AfumigatusState, ) hemoglobin: HemoglobinState = state.hemoglobin molecules: MoleculesState = state.molecules afumigatus: AfumigatusState = state.afumigatus grid: RectangularGrid = state.grid # afumigatus uptakes iron from hemoglobin for afumigatus_cell_index in afumigatus.cells.alive(): afumigatus_cell: AfumigatusCellData = afumigatus.cells[afumigatus_cell_index] if afumigatus_cell['status'] in { AfumigatusCellStatus.HYPHAE, AfumigatusCellStatus.GERM_TUBE, }: afumigatus_cell_voxel: Voxel = grid.get_voxel(afumigatus_cell['point']) fungal_absorbed_hemoglobin = ( hemoglobin.uptake_rate * hemoglobin.grid[tuple(afumigatus_cell_voxel)] ) hemoglobin.grid[tuple(afumigatus_cell_voxel)] -= fungal_absorbed_hemoglobin afumigatus_cell['iron_pool'] += 4 * fungal_absorbed_hemoglobin # Degrade Hemoglobin hemoglobin.grid *= turnover_rate( x=hemoglobin.grid, x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of Hemoglobin hemoglobin.grid[:] = apply_diffusion( variable=hemoglobin.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state def summary_stats(self, state: State) -> Dict[str, Any]: hemoglobin: HemoglobinState = state.hemoglobin voxel_volume = state.voxel_volume return { 'concentration (nM)': float(np.mean(hemoglobin.grid) / voxel_volume / 1e9), } def visualization_data(self, state: State): hemoglobin: HemoglobinState = state.hemoglobin return 'molecule', hemoglobin.gridAncestorsMethods- def advance(self, state: State, previous_time: float) ‑> State
- 
Advance the state by a single time step. Expand source codedef advance(self, state: State, previous_time: float) -> State: """Advance the state by a single time step.""" from nlisim.modules.afumigatus import ( AfumigatusCellData, AfumigatusCellStatus, AfumigatusState, ) hemoglobin: HemoglobinState = state.hemoglobin molecules: MoleculesState = state.molecules afumigatus: AfumigatusState = state.afumigatus grid: RectangularGrid = state.grid # afumigatus uptakes iron from hemoglobin for afumigatus_cell_index in afumigatus.cells.alive(): afumigatus_cell: AfumigatusCellData = afumigatus.cells[afumigatus_cell_index] if afumigatus_cell['status'] in { AfumigatusCellStatus.HYPHAE, AfumigatusCellStatus.GERM_TUBE, }: afumigatus_cell_voxel: Voxel = grid.get_voxel(afumigatus_cell['point']) fungal_absorbed_hemoglobin = ( hemoglobin.uptake_rate * hemoglobin.grid[tuple(afumigatus_cell_voxel)] ) hemoglobin.grid[tuple(afumigatus_cell_voxel)] -= fungal_absorbed_hemoglobin afumigatus_cell['iron_pool'] += 4 * fungal_absorbed_hemoglobin # Degrade Hemoglobin hemoglobin.grid *= turnover_rate( x=hemoglobin.grid, x_system=0.0, base_turnover_rate=molecules.turnover_rate, rel_cyt_bind_unit_t=molecules.rel_cyt_bind_unit_t, ) # Diffusion of Hemoglobin hemoglobin.grid[:] = apply_diffusion( variable=hemoglobin.grid, laplacian=molecules.laplacian, diffusivity=molecules.diffusion_constant, dt=self.time_step, ) return state
 Inherited members
- class HemoglobinState (*, global_state: State, grid: numpy.ndarray = NOTHING)
- 
Base type intended to store the state for simulation modules. This class contains serialization support for basic types (float, int, str, bool) and numpy arrays of those types. Modules containing more complicated state must override the serialization mechanism with custom behavior. Method generated by attrs for class HemoglobinState. Expand source codeclass HemoglobinState(ModuleState): grid: np.ndarray = attrib(default=attr.Factory(molecule_grid_factory, takes_self=True)) uptake_rate: float ma_heme_import_rate: floatAncestorsClass variables- var grid : numpy.ndarray
- var ma_heme_import_rate : float
- var uptake_rate : float
 Inherited members